Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hum Mol Genet ; 32(6): 1032-1047, 2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36282544

RESUMO

Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome is a congenital condition characterized by aplasia or hypoplasia of the uterus and vagina in women with a 46,XX karyotype. This condition can occur as type I when isolated or as type II when associated with extragenital anomalies including kidney and skeletal abnormalities. The genetic basis of MRKH syndrome remains unexplained and several candidate genes have been proposed to play a role in its etiology, including HNF1B, LHX1 and WNT4. Here, we conducted a microarray analysis of 13 women affected by MRKH syndrome, resulting in the identification of chromosomal changes, including the deletion at 17q12, which contains both HNF1B and LHX1. We focused on HNF1B for further investigation due to its known association with, but unknown etiological role in, MRKH syndrome. We ablated Hnf1b specifically in the epithelium of the Müllerian ducts in mice and found that this caused hypoplastic development of the uterus, as well as kidney anomalies, closely mirroring the MRKH type II phenotype. Using single-cell RNA sequencing of uterine tissue in the Hnf1b-ablated embryos, we analyzed the molecules and pathways downstream of Hnf1b, revealing a dysregulation of processes associated with cell proliferation, migration and differentiation. Thus, we establish that loss of Hnf1b function leads to an MRKH phenotype and generate the first mouse model of MRKH syndrome type II. Our results support the investigation of HNF1B in clinical genetic settings of MRKH syndrome and shed new light on the molecular mechanisms underlying this poorly understood condition in women's reproductive health.


Assuntos
Transtornos 46, XX do Desenvolvimento Sexual , Ductos Paramesonéfricos , Animais , Feminino , Camundongos , Transtornos 46, XX do Desenvolvimento Sexual/genética , Diferenciação Celular , Genômica , Fator 1-beta Nuclear de Hepatócito/genética , Humanos
2.
Dis Model Mech ; 14(5)2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33737325

RESUMO

Heterozygous mutations in HNF1B cause the complex syndrome renal cysts and diabetes (RCAD), characterized by developmental abnormalities of the kidneys, genital tracts and pancreas, and a variety of renal, pancreas and liver dysfunctions. The pathogenesis underlying this syndrome remains unclear as mice with heterozygous null mutations have no phenotype, while constitutive/conditional Hnf1b ablation leads to more severe phenotypes. We generated a novel mouse model carrying an identified human mutation at the intron-2 splice donor site. Unlike heterozygous mice previously characterized, mice heterozygous for the splicing mutation exhibited decreased HNF1B protein levels and bilateral renal cysts from embryonic day 15, originated from glomeruli, early proximal tubules (PTs) and intermediate nephron segments, concurrently with delayed PT differentiation, hydronephrosis and rare genital tract anomalies. Consistently, mRNA sequencing showed that most downregulated genes in embryonic kidneys were primarily expressed in early PTs and the loop of Henle and involved in ion/drug transport, organic acid and lipid metabolic processes, while the expression of previously identified targets upon Hnf1b ablation, including cystic disease genes, was weakly or not affected. Postnatal analyses revealed renal abnormalities, ranging from glomerular cysts to hydronephrosis and, rarely, multicystic dysplasia. Urinary proteomics uncovered a particular profile predictive of progressive decline in kidney function and fibrosis, and displayed common features with a recently reported urine proteome in an RCAD pediatric cohort. Altogether, our results show that reduced HNF1B levels lead to developmental disease phenotypes associated with the deregulation of a subset of HNF1B targets. They further suggest that this model represents a unique clinical/pathological viable model of the RCAD disease.


Assuntos
Doenças do Sistema Nervoso Central/genética , Esmalte Dentário/anormalidades , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Tipo 2/genética , Genes Controladores do Desenvolvimento , Haploinsuficiência/genética , Fator 1-beta Nuclear de Hepatócito/genética , Doenças Renais Císticas/genética , Animais , Animais Recém-Nascidos , Polaridade Celular , Doenças do Sistema Nervoso Central/patologia , Cílios/patologia , Esmalte Dentário/patologia , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 2/patologia , Modelos Animais de Doenças , Embrião de Mamíferos/patologia , Dosagem de Genes , Perfilação da Expressão Gênica , Heterozigoto , Humanos , Hidronefrose/complicações , Doenças Renais Císticas/patologia , Glomérulos Renais/patologia , Túbulos Renais/patologia , Camundongos Endogâmicos C57BL , Mutação/genética , Néfrons/patologia , Splicing de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Índice de Gravidade de Doença
3.
J Pathol ; 254(1): 31-45, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33527355

RESUMO

Maturity-onset diabetes of the young type 5 (MODY5) is due to heterozygous mutations or deletion of HNF1B. No mouse models are currently available to recapitulate the human MODY5 disease. Here, we investigate the pancreatic phenotype of a unique MODY5 mouse model generated by heterozygous insertion of a human HNF1B splicing mutation at the intron-2 splice donor site in the mouse genome. This Hnf1bsp2/+ model generated with targeted mutation of Hnf1b mimicking the c.544+1G>T (T) mutation identified in humans, results in alternative transcripts and a 38% decrease of native Hnf1b transcript levels. As a clinical feature of MODY5 patients, the hypomorphic mouse model Hnf1bsp2/+ displays glucose intolerance. Whereas Hnf1bsp2/+ isolated islets showed no altered insulin secretion, we found a 65% decrease in pancreatic insulin content associated with a 30% decrease in total large islet volume and a 20% decrease in total ß-cell volume. These defects were associated with a 30% decrease in expression of the pro-endocrine gene Neurog3 that we previously identified as a direct target of Hnf1b, showing a developmental etiology. As another clinical feature of MODY5 patients, the Hnf1bsp2/+ pancreases display exocrine dysfunction with hypoplasia. We observed chronic pancreatitis with loss of acinar cells, acinar-to-ductal metaplasia, and lipomatosis, with upregulation of signaling pathways and impaired acinar cell regeneration. This was associated with ductal cell deficiency characterized by shortened primary cilia. Importantly, the Hnf1bsp2/+ mouse model reproduces the pancreatic features of the human MODY5/HNF1B disease, providing a unique in vivo tool for molecular studies of the endocrine and exocrine defects and to advance basic and translational research. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Doenças do Sistema Nervoso Central/genética , Doenças do Sistema Nervoso Central/fisiopatologia , Esmalte Dentário/anormalidades , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/fisiopatologia , Modelos Animais de Doenças , Fator 1-beta Nuclear de Hepatócito/genética , Doenças Renais Císticas/genética , Doenças Renais Císticas/fisiopatologia , Pâncreas/fisiopatologia , Animais , Doenças do Sistema Nervoso Central/patologia , Esmalte Dentário/patologia , Esmalte Dentário/fisiopatologia , Diabetes Mellitus Tipo 2/patologia , Humanos , Doenças Renais Císticas/patologia , Camundongos , Camundongos Transgênicos , Mutação , Pâncreas/patologia , Fenótipo
4.
Cell Mol Gastroenterol Hepatol ; 8(3): 487-511, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31229598

RESUMO

BACKGROUND & AIMS: The exocrine pancreas consists of acinar cells that produce digestive enzymes transported to the intestine through a branched ductal epithelium. Chronic pancreatitis is characterized by progressive inflammation, fibrosis, and loss of acinar tissue. These changes of the exocrine tissue are risk factors for pancreatic cancer. The cause of chronic pancreatitis cannot be identified in one quarter of patients. Here, we investigated how duct dysfunction could contribute to pancreatitis development. METHODS: The transcription factor Hnf1b, first expressed in pancreatic progenitors, is strictly restricted to ductal cells from late embryogenesis. We previously showed that Hnf1b is crucial for pancreas morphogenesis but its postnatal role still remains unelucidated. To investigate the role of pancreatic ducts in exocrine homeostasis, we inactivated the Hnf1b gene in vivo in mouse ductal cells. RESULTS: We uncovered that postnatal Hnf1b inactivation in pancreatic ducts leads to chronic pancreatitis in adults. Hnf1bΔduct mutants show dilatation of ducts, loss of acinar cells, acinar-to-ductal metaplasia, and lipomatosis. We deciphered the early events involved, with down-regulation of cystic disease-associated genes, loss of primary cilia, up-regulation of signaling pathways, especially the Yap pathway, which is involved in acinar-to-ductal metaplasia. Remarkably, Hnf1bΔduct mutants developed pancreatic intraepithelial neoplasia and promote pancreatic intraepithelial neoplasia progression in concert with KRAS. We further showed that adult Hnf1b inactivation in pancreatic ducts is associated with impaired regeneration after injury, with persistent metaplasia and initiation of neoplasia. CONCLUSIONS: Loss of Hnf1b in ductal cells leads to chronic pancreatitis and neoplasia. This study shows that Hnf1b deficiency may contribute to diseases of the exocrine pancreas and gains further insight into the etiology of pancreatitis and tumorigenesis.


Assuntos
Carcinoma in Situ/genética , Deleção de Genes , Fator 1-beta Nuclear de Hepatócito/genética , Ductos Pancreáticos/crescimento & desenvolvimento , Neoplasias Pancreáticas/genética , Pancreatite/genética , Animais , Animais Recém-Nascidos , Carcinoma in Situ/metabolismo , Feminino , Predisposição Genética para Doença , Fator 1-beta Nuclear de Hepatócito/metabolismo , Homeostase , Humanos , Camundongos , Pâncreas Exócrino/metabolismo , Ductos Pancreáticos/metabolismo , Neoplasias Pancreáticas/metabolismo , Pancreatite/complicações , Pancreatite/metabolismo , Transdução de Sinais
5.
Sci Rep ; 9(1): 2225, 2019 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-30778115

RESUMO

Renal Cysts and Diabetes Syndrome (RCAD) is an autosomal dominant disorder caused by mutations in the HNF1B gene encoding for the transcriptional factor hepatocyte nuclear factor-1B. RCAD is characterized as a multi-organ disease, with a broad spectrum of symptoms including kidney abnormalities (renal cysts, renal hypodysplasia, single kidney, horseshoe kidneys, hydronephrosis), early-onset diabetes mellitus, abnormal liver function, pancreatic hypoplasia and genital tract malformations. In the present study, using capillary electrophoresis coupled to mass spectrometry (CE-MS), we investigated the urinary proteome of a pediatric cohort of RCAD patients and different controls to identify peptide biomarkers and obtain further insights into the pathophysiology of this disorder. As a result, 146 peptides were found to be associated with RCAD in 22 pediatric patients when compared to 22 healthy age-matched controls. A classifier based on these peptides was generated and further tested on an independent cohort, clearly discriminating RCAD patients from different groups of controls. This study demonstrates that the urinary proteome of pediatric RCAD patients differs from autosomal dominant polycystic kidney disease (PKD1, PKD2), congenital nephrotic syndrome (NPHS1, NPHS2, NPHS4, NPHS9) as well as from chronic kidney disease conditions, suggesting differences between the pathophysiology behind these disorders.


Assuntos
Biomarcadores , Doenças do Sistema Nervoso Central/metabolismo , Esmalte Dentário/anormalidades , Diabetes Mellitus Tipo 2/metabolismo , Doenças Renais Císticas/metabolismo , Proteoma , Proteômica , Adolescente , Biomarcadores/urina , Doenças do Sistema Nervoso Central/diagnóstico , Doenças do Sistema Nervoso Central/urina , Criança , Pré-Escolar , Esmalte Dentário/metabolismo , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/urina , Diagnóstico Diferencial , Feminino , Humanos , Doenças Renais Císticas/diagnóstico , Doenças Renais Císticas/urina , Masculino , Espectrometria de Massas , Peptídeos/urina , Fenótipo , Proteômica/métodos , Reprodutibilidade dos Testes
6.
J Proteome Res ; 17(7): 2293-2306, 2018 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-29873499

RESUMO

In the present study, we performed a metabolomics analysis to evaluate a MODY5/RCAD mouse mutant line as a potential model for HNF1B-associated diseases. Gas chromatography time-of-flight mass spectrometry (GC-TOF-MS) of gut, kidney, liver, muscle, pancreas, and plasma samples uncovered the tissue specific metabolite distribution. Orthogonal projections to latent structures discriminant analysis (OPLS-DA) was used to identify the differences between MODY5/RCAD and wild-type mice in each of the tissues. The differences included, for example, increased levels of amino acids in the kidneys and reduced levels of fatty acids in the muscles of the MODY5/RCAD mice. Interestingly, campesterol was found in higher concentrations in the MODY5/RCAD mice, with a four-fold and three-fold increase in kidneys and pancreas, respectively. As expected, the MODY5/RCAD mice displayed signs of impaired renal function in addition to disturbed liver lipid metabolism, with increased lipid and fatty acid accumulation in the liver. From a metabolomics perspective, the MODY5/RCAD model was proven to display a metabolic pattern similar to what would be suspected in HNF1B-associated diseases. These findings were in line with the presumed outcome of the mutation based on the different anatomy and function of the tissues as well as the effect of the mutation on development.


Assuntos
Modelos Animais de Doenças , Metabolômica/métodos , Camundongos Mutantes/metabolismo , Animais , Caderinas/genética , Cromatografia Gasosa-Espectrometria de Massas , Fator 1-beta Nuclear de Hepatócito/genética , Rim/metabolismo , Fígado/metabolismo , Camundongos , Pâncreas/metabolismo
7.
Development ; 144(24): 4704-4719, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29158444

RESUMO

Kidney development depends crucially on proper ureteric bud branching giving rise to the entire collecting duct system. The transcription factor HNF1B is required for the early steps of ureteric bud branching, yet the molecular and cellular events regulated by HNF1B are poorly understood. We report that specific removal of Hnf1b from the ureteric bud leads to defective cell-cell contacts and apicobasal polarity during the early branching events. High-resolution ex vivo imaging combined with a membranous fluorescent reporter strategy show decreased mutant cell rearrangements during mitosis-associated cell dispersal and severe epithelial disorganization. Molecular analysis reveals downregulation of Gdnf-Ret pathway components and suggests that HNF1B acts both upstream and downstream of Ret signaling by directly regulating Gfra1 and Etv5 Subsequently, Hnf1b deletion leads to massively mispatterned ureteric tree network, defective collecting duct differentiation and disrupted tissue architecture, which leads to cystogenesis. Consistently, mRNA-seq analysis shows that the most impacted genes encode intrinsic cell-membrane components with transporter activity. Our study uncovers a fundamental and recurring role of HNF1B in epithelial organization during early ureteric bud branching and in further patterning and differentiation of the collecting duct system in mouse.


Assuntos
Polaridade Celular/genética , Fator 1-beta Nuclear de Hepatócito/genética , Túbulos Renais Coletores/embriologia , Ureter/embriologia , Anormalidades Urogenitais/embriologia , Anormalidades Urogenitais/genética , Animais , Adesão Celular/genética , Células Cultivadas , Proteínas de Ligação a DNA/metabolismo , Regulação para Baixo/genética , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Fator 1-beta Nuclear de Hepatócito/metabolismo , Camundongos , Camundongos Knockout , Proteínas Nucleares/metabolismo , Técnicas de Cultura de Órgãos , Fator de Transcrição PAX2/biossíntese , Transdução de Sinais/genética , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases
8.
Development ; 144(6): 1113-1117, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28219945

RESUMO

Tissue, organ and organoid cultures provide suitable models for developmental studies, but our understanding of how the organs are assembled at the single-cell level still remains unclear. We describe here a novel fixed z-direction (FiZD) culture setup that permits high-resolution confocal imaging of organoids and embryonic tissues. In a FiZD culture a permeable membrane compresses the tissues onto a glass coverslip and the spacers adjust the thickness, enabling the tissue to grow for up to 12 days. Thus, the kidney rudiment and the organoids can adjust to the limited z-directional space and yet advance the process of kidney morphogenesis, enabling long-term time-lapse and high-resolution confocal imaging. As the data quality achieved was sufficient for computer-assisted cell segmentation and analysis, the method can be used for studying morphogenesis ex vivo at the level of the single constituent cells of a complex mammalian organogenesis model system.


Assuntos
Rim/embriologia , Microscopia Confocal/métodos , Organoides/embriologia , Imagem com Lapso de Tempo/métodos , Técnicas de Cultura de Tecidos/métodos , Animais , Imageamento Tridimensional , Camundongos , Morfogênese
9.
Cells ; 4(3): 483-99, 2015 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-26378582

RESUMO

The nephron is the basic structural and functional unit of the vertebrate kidney. To ensure kidney functions, the nephrons possess a highly segmental organization where each segment is specialized for the secretion and reabsorption of particular solutes. During embryogenesis, nephron progenitors undergo a mesenchymal-to-epithelial transition (MET) and acquire different segment-specific cell fates along the proximo-distal axis of the nephron. Even if the morphological changes occurring during nephrogenesis are characterized, the regulatory networks driving nephron segmentation are still poorly understood. Interestingly, several studies have shown that the pronephric nephrons in Xenopus and zebrafish are segmented in a similar fashion as the mouse metanephric nephrons. Here we review functional and molecular aspects of nephron segmentation with a particular interest on the signaling molecules and transcription factors recently implicated in kidney development in these three different vertebrate model organisms. A complete understanding of the mechanisms underlying nephrogenesis in different model organisms will provide novel insights on the etiology of several human renal diseases.

10.
PLoS One ; 10(6): e0129260, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26086868

RESUMO

Hierarchical modelling was applied in order to identify the organs that contribute to the levels of metabolites in plasma. Plasma and organ samples from gut, kidney, liver, muscle and pancreas were obtained from mice. The samples were analysed using gas chromatography time-of-flight mass spectrometry (GC TOF-MS) at the Swedish Metabolomics centre, Umeå University, Sweden. The multivariate analysis was performed by means of principal component analysis (PCA) and orthogonal projections to latent structures (OPLS). The main goal of this study was to investigate how each organ contributes to the metabolic plasma profile. This was performed using hierarchical modelling. Each organ was found to have a unique metabolic profile. The hierarchical modelling showed that the gut, kidney and liver demonstrated the greatest contribution to the metabolic pattern of plasma. For example, we found that metabolites were absorbed in the gut and transported to the plasma. The kidneys excrete branched chain amino acids (BCAAs) and fatty acids are transported in the plasma to the muscles and liver. Lactic acid was also found to be transported from the pancreas to plasma. The results indicated that hierarchical modelling can be utilized to identify the organ contribution of unknown metabolites to the metabolic profile of plasma.


Assuntos
Trato Gastrointestinal/metabolismo , Rim/metabolismo , Fígado/metabolismo , Metaboloma , Metabolômica/métodos , Modelos Teóricos , Músculo Esquelético/metabolismo , Pâncreas/metabolismo , Animais , Cromatografia Gasosa-Espectrometria de Massas/métodos , Camundongos
11.
Development ; 142(5): 871-82, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25715395

RESUMO

Heterozygous mutations in the human HNF1B gene are associated with maturity-onset diabetes of the young type 5 (MODY5) and pancreas hypoplasia. In mouse, Hnf1b heterozygous mutants do not exhibit any phenotype, whereas the homozygous deletion in the entire epiblast leads to pancreas agenesis associated with abnormal gut regionalization. Here, we examine the specific role of Hnf1b during pancreas development, using constitutive and inducible conditional inactivation approaches at key developmental stages. Hnf1b early deletion leads to a reduced pool of pancreatic multipotent progenitor cells (MPCs) due to decreased proliferation and increased apoptosis. Lack of Hnf1b either during the first or the secondary transitions is associated with cystic ducts. Ductal cells exhibit aberrant polarity and decreased expression of several cystic disease genes, some of which we identified as novel Hnf1b targets. Notably, we show that Glis3, a transcription factor involved in duct morphogenesis and endocrine cell development, is downstream Hnf1b. In addition, a loss and abnormal differentiation of acinar cells are observed. Strikingly, inactivation of Hnf1b at different time points results in the absence of Ngn3(+) endocrine precursors throughout embryogenesis. We further show that Hnf1b occupies novel Ngn3 putative regulatory sequences in vivo. Thus, Hnf1b plays a crucial role in the regulatory networks that control pancreatic MPC expansion, acinar cell identity, duct morphogenesis and generation of endocrine precursors. Our results uncover an unappreciated requirement of Hnf1b in endocrine cell specification and suggest a mechanistic explanation of diabetes onset in individuals with MODY5.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fator 1-beta Nuclear de Hepatócito/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Pâncreas/citologia , Pâncreas/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diferenciação Celular/fisiologia , Imunoprecipitação da Cromatina , Ducto Cístico/citologia , Ducto Cístico/metabolismo , Proteínas de Ligação a DNA , Feminino , Fator 1-beta Nuclear de Hepatócito/genética , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Camundongos , Células-Tronco Multipotentes/citologia , Células-Tronco Multipotentes/metabolismo , Proteínas do Tecido Nervoso/genética , Gravidez , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transativadores/genética , Transativadores/metabolismo
12.
J Biol Chem ; 288(23): 16655-16670, 2013 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-23592779

RESUMO

Cubilin (Cubn) is a multiligand endocytic receptor critical for the intestinal absorption of vitamin B12 and renal protein reabsorption. During mouse development, Cubn is expressed in both embryonic and extra-embryonic tissues, and Cubn gene inactivation results in early embryo lethality most likely due to the impairment of the function of extra-embryonic Cubn. Here, we focus on the developmental role of Cubn expressed in the embryonic head. We report that Cubn is a novel, interspecies-conserved Fgf receptor. Epiblast-specific inactivation of Cubn in the mouse embryo as well as Cubn silencing in the anterior head of frog or the cephalic neural crest of chick embryos show that Cubn is required during early somite stages to convey survival signals in the developing vertebrate head. Surface plasmon resonance analysis reveals that fibroblast growth factor 8 (Fgf8), a key mediator of cell survival, migration, proliferation, and patterning in the developing head, is a high affinity ligand for Cubn. Cell uptake studies show that binding to Cubn is necessary for the phosphorylation of the Fgf signaling mediators MAPK and Smad1. Although Cubn may not form stable ternary complexes with Fgf receptors (FgfRs), it acts together with and/or is necessary for optimal FgfR activity. We propose that plasma membrane binding of Fgf8, and most likely of the Fgf8 family members Fgf17 and Fgf18, to Cubn improves Fgf ligand endocytosis and availability to FgfRs, thus modulating Fgf signaling activity.


Assuntos
Fator 8 de Crescimento de Fibroblasto/metabolismo , Cabeça/embriologia , Sistema de Sinalização das MAP Quinases/fisiologia , Crista Neural/embriologia , Receptores de Superfície Celular/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Animais , Sobrevivência Celular/fisiologia , Endocitose/fisiologia , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fator 8 de Crescimento de Fibroblasto/genética , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Inativação Gênica , Ligantes , Camundongos , Camundongos Transgênicos , Crista Neural/citologia , Ligação Proteica , Receptores de Superfície Celular/genética , Receptores de Fatores de Crescimento de Fibroblastos/genética
13.
Nature ; 494(7435): 111-5, 2013 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-23389544

RESUMO

Insulin resistance represents a hallmark during the development of type 2 diabetes mellitus and in the pathogenesis of obesity-associated disturbances of glucose and lipid metabolism. MicroRNA (miRNA)-dependent post-transcriptional gene silencing has been recognized recently to control gene expression in disease development and progression, including that of insulin-resistant type 2 diabetes. The deregulation of miRNAs miR-143 (ref. 4), miR-181 (ref. 5), and miR-103 and miR-107 (ref. 6) alters hepatic insulin sensitivity. Here we report that the expression of miR-802 is increased in the liver of two obese mouse models and obese human subjects. Inducible transgenic overexpression of miR-802 in mice causes impaired glucose tolerance and attenuates insulin sensitivity, whereas reduction of miR-802 expression improves glucose tolerance and insulin action. We identify Hnf1b (also known as Tcf2) as a target of miR-802-dependent silencing, and show that short hairpin RNA (shRNA)-mediated reduction of Hnf1b in liver causes glucose intolerance, impairs insulin signalling and promotes hepatic gluconeogenesis. In turn, hepatic overexpression of Hnf1b improves insulin sensitivity in Lepr(db/db) mice. Thus, this study defines a critical role for deregulated expression of miR-802 in the development of obesity-associated impairment of glucose metabolism through targeting of Hnf1b, and assigns Hnf1b an unexpected role in the control of hepatic insulin sensitivity.


Assuntos
Inativação Gênica , Glucose/metabolismo , Fator 1-beta Nuclear de Hepatócito/deficiência , MicroRNAs/genética , Obesidade/genética , Animais , Regulação da Expressão Gênica , Gluconeogênese , Glucose/biossíntese , Intolerância à Glucose/genética , Intolerância à Glucose/metabolismo , Fator 1-beta Nuclear de Hepatócito/genética , Fator 1-beta Nuclear de Hepatócito/metabolismo , Humanos , Insulina/metabolismo , Resistência à Insulina/genética , Fígado/metabolismo , Camundongos , MicroRNAs/biossíntese , Transdução de Sinais
14.
Development ; 140(4): 873-85, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23362348

RESUMO

The nephron is a highly specialised segmented structure that provides essential filtration and resorption renal functions. It arises by formation of a polarised renal vesicle that differentiates into a comma-shaped body and then a regionalised S-shaped body (SSB), with the main prospective segments mapped to discrete domains. The regulatory circuits involved in initial nephron patterning are poorly understood. We report here that HNF1B, a transcription factor known to be involved in ureteric bud branching and initiation of nephrogenesis, has an additional role in segment fate acquisition. Hnf1b conditional inactivation in murine nephron progenitors results in rudimentary nephrons comprising a glomerulus connected to the collecting system by a short tubule displaying distal fates. Renal vesicles develop and polarise normally but fail to progress to correctly patterned SSBs. Major defects are evident at late SSBs, with altered morphology, reduction of a proximo-medial subdomain and increased apoptosis. This is preceded by strong downregulation of the Notch pathway components Lfng, Dll1 and Jag1 and the Irx1/2 factors, which are potential regulators of proximal and Henle's loop segment fates. Moreover, HNF1B is recruited to the regulatory sequences of most of these genes. Overexpression of a HNF1B dominant-negative construct in Xenopus embryos causes downregulation specifically of proximal and intermediate pronephric segment markers. These results show that HNF1B is required for the acquisition of a proximo-intermediate segment fate in vertebrates, thus uncovering a previously unappreciated function of a novel SSB subcompartment in global nephron segmentation and further differentiation.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Fator 1-beta Nuclear de Hepatócito/metabolismo , Néfrons/embriologia , Organogênese/fisiologia , Receptores Notch/metabolismo , Transdução de Sinais/fisiologia , Animais , Imunoprecipitação da Cromatina , Regulação da Expressão Gênica no Desenvolvimento/genética , Técnicas Histológicas , Proteínas de Homeodomínio/metabolismo , Imageamento Tridimensional , Imuno-Histoquímica , Hibridização In Situ , Marcação In Situ das Extremidades Cortadas , Camundongos , Néfrons/metabolismo , Organogênese/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tomografia Óptica , Fatores de Transcrição/metabolismo
15.
Methods Mol Biol ; 886: 275-91, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22639270

RESUMO

Chromatin immunoprecipitation (ChIP) is a powerful technique for examining transcription factor recruitment to chromatin, or histone modifications, at the level of specific genomic sequences. As such, it provides an invaluable tool for elucidating gene regulation at the molecular level. Combined with high-throughput methods such as second generation sequencing (ChIP-Seq), this technique is now commonly used for studying DNA-protein interactions at a genome-wide scale. The ChIP technique is based on covalent cross-linking of DNA and proteins with formaldehyde, followed by chromatin fragmentation, either enzymatic or by sonication, and immunoprecipitation of protein-DNA complexes using antibodies specific for the protein of interest. The immunoprecipitated DNA is then purified and the DNA sequences associated with the immunoprecipitated protein are identified by PCR (ChIP-PCR) or, alternatively, by direct sequencing (ChIP-Seq). Initially, the vast majority of ChIP experiments were performed on cultured cell lines. More recently, this technique has been adapted to a variety of tissues in different model organisms. We describe here a ChIP protocol on freshly isolated mouse embryonic kidneys for in vivo analysis of transcription factor recruitment on chromatin. This protocol has been easily adapted to other mouse embryonic tissues and has also been successfully scaled up to perform ChIP-Seq.


Assuntos
Imunoprecipitação da Cromatina/métodos , Cromatina/química , Rim/embriologia , Fatores de Transcrição/análise , Animais , DNA/genética , DNA/isolamento & purificação , Dissecação/métodos , Rim/cirurgia , Camundongos , Reação em Cadeia da Polimerase/métodos , Análise de Sequência de DNA/métodos , Sonicação/métodos
16.
Hum Mol Genet ; 21(14): 3143-55, 2012 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-22511595

RESUMO

The transcription factors HNF1B and Pax2, co-expressed in the Wolffian duct and ureteric bud epithelia, play essential roles during the early steps of mouse kidney development. In humans, heterozygous mutations in these genes display a number of common kidney phenotypes, including hypoplasia and multicystic hypoplastic kidneys. Moreover, a high prevalence of mutations either in HNF1B or PAX2 has been observed in children with renal hypodysplasia. To gain a better understanding of Hnf1b and Pax2 interactions in vivo, we generated compound heterozygous mice for Hnf1b and Pax2 null alleles. We show here that compound heterozygous mutants display phenotypes similar to severe congenital anomalies of the kidney and the urinary tract (CAKUT), including strong hypoplasia of the kidneys, caudal ectopic aborted ureter buds, duplex kidneys, megaureters and hydronephrosis. At a molecular level, compound mutants show a delay in nephron segment and medullar interstitial differentiation, increased apoptosis and a transient decrease in Lim1 and Wnt4 expression. We also observe a perturbation of smooth muscle differentiation around the ureter associated with a local down-regulation in transcript levels of Bmp4 and Tbx18, two key regulators involved in ureter smooth muscle formation, thus explaining, at least in part, megaureters. These results together uncover a novel role of Hnf1b as a modifier of the Pax2 haplo-insufficient phenotype and show that these two transcription factors operate in common pathways governing both kidney morphogenesis and ureter differentiation. This mouse model should provide new insights into the pathogenic mechanisms of human CAKUT, the most frequent developmental defect identified in newborns.


Assuntos
Fator 1-beta Nuclear de Hepatócito/metabolismo , Nefropatias/metabolismo , Rim/metabolismo , Morfogênese , Fator de Transcrição PAX2/metabolismo , Ureter/metabolismo , Doenças Ureterais/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Fator 1-beta Nuclear de Hepatócito/genética , Humanos , Rim/embriologia , Nefropatias/embriologia , Nefropatias/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator de Transcrição PAX2/genética , Ureter/embriologia , Doenças Ureterais/embriologia , Doenças Ureterais/genética
17.
Development ; 137(2): 347-57, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20040500

RESUMO

Mouse metanephric kidney development begins with the induction of the ureteric bud (UB) from the caudal portion of the Wolffian duct by metanephric mesenchymal signals. While the UB undergoes branching morphogenesis to generate the entire urinary collecting system and the ureter, factors secreted by the UB tips induce surrounding mesenchymal cells to convert into epithelia and form the nephrons, the functional units of the kidney. Epithelial branching morphogenesis and nephrogenesis are therefore tightly orchestrated; defects in either of these processes lead to severe kidney phenotypes ranging from hypoplasia to complete aplasia. However, the underlying regulatory networks have been only partially elucidated. Here, we identify the transcription factor vHNF1 (HNF1beta) as a crucial regulator of these early developmental events. Initially involved in timing outgrowth of the UB and subsequent branching, vHNF1 is also required for nephric duct epithelial maintenance, Müllerian duct formation and early nephrogenesis. Mosaic analyses further suggest a cell-autonomous requirement for vHNF1 in the acquisition of a specialized tip domain and branching morphogenesis. vHNF1 exerts these intricate functions at least in part through the direct control of key regulatory molecules involved in different aspects of early kidney development. Notably, vHNF1 acting directly upstream of Wnt9b appears to orchestrate Wnt signaling action in the mesenchymal-epithelial transitions underlying the initiation of nephrogenesis. These results demonstrate that vHNF1 is an essential transcriptional regulator that, in addition to the known later functions in normal duct morphogenesis, plays a crucial role during the earliest stages of urogenital development and provide novel insights into the regulatory circuits controlling events.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Fator 1-beta Nuclear de Hepatócito/metabolismo , Rim/embriologia , Organogênese/fisiologia , Ureter/embriologia , Animais , Linhagem Celular , Imunoprecipitação da Cromatina , Ensaio de Desvio de Mobilidade Eletroforética , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Fator 1-beta Nuclear de Hepatócito/genética , Humanos , Imuno-Histoquímica , Hibridização In Situ , Rim/metabolismo , Camundongos , Organogênese/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ureter/metabolismo
18.
Development ; 135(16): 2777-86, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18635606

RESUMO

Mouse liver induction occurs via the acquisition of ventral endoderm competence to respond to inductive signals from adjacent mesoderm, followed by hepatic specification. Little is known about the regulatory circuit involved in these processes. Through the analysis of vHnf1 (Hnf1b)-deficient embryos, generated by tetraploid embryo complementation, we demonstrate that lack of vHNF1 leads to defective hepatic bud formation and abnormal gut regionalization. Thickening of the ventral hepatic endoderm and expression of known hepatic genes do not occur. At earlier stages, hepatic specification of vHnf1-/- ventral endoderm is disrupted. More importantly, mutant ventral endoderm cultured in vitro loses its responsiveness to inductive FGF signals and fails to induce the hepatic-specification genes albumin and transthyretin. Analysis of liver induction in zebrafish indicates a conserved role of vHNF1 in vertebrates. Our results reveal the crucial role of vHNF1 at the earliest steps of liver induction: the acquisition of endoderm competence and the hepatic specification.


Assuntos
Endoderma/embriologia , Fator 1-beta Nuclear de Hepatócito/fisiologia , Hepatócitos/citologia , Fígado/embriologia , Mesoderma/embriologia , Proteínas de Peixe-Zebra/fisiologia , Animais , Diferenciação Celular/fisiologia , Endoderma/fisiologia , Feminino , Fatores de Crescimento de Fibroblastos/fisiologia , Fator 1-beta Nuclear de Hepatócito/genética , Hepatócitos/fisiologia , Fígado/citologia , Fígado/fisiologia , Masculino , Mesoderma/fisiologia , Camundongos , Especificidade da Espécie , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
19.
Mech Dev ; 124(6): 449-62, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17452094

RESUMO

Vezatin, a protein associated to adherens junctions in epithelial cells, is already expressed in mouse oocytes and during pre-implantation development. Using a floxed strategy to generate a vezatin-null allele, we show that the lack of zygotic vezatin is embryonic lethal, indicating that vezatin is an essential gene. Homozygous null embryos are able to elicit a decidual response but as early as day 6.0 post-coitum mutant implantation sites are devoid of embryonic structures. Mutant blastocysts are morphologically normal, but only half of them are able to hatch upon in vitro culture and the blastocyst outgrowths formed after 3.5 days in culture exhibit severe abnormalities, in particular disrupted intercellular adhesion and clear signs of cellular degeneration. Notably, the junctional proteins E-cadherin and beta-catenin are delocalized and not observed at the plasma membrane anymore. These in vitro observations reinforce the idea that homozygous vezatin-null mutants die at the time of implantation because of a defect in intercellular adhesion. Together these results indicate that the absence of zygotic vezatin is deleterious for the implantation process, most likely because cadherin-dependent intercellular adhesion is impaired in late blastocysts when the maternal vezatin is lost.


Assuntos
Junções Aderentes/genética , Proteínas de Transporte/fisiologia , Implantação do Embrião/genética , Embrião de Mamíferos/fisiologia , Genes Letais , Proteínas de Membrana/fisiologia , Zigoto/fisiologia , Sequência de Aminoácidos , Animais , Proteínas de Transporte/análise , Proteínas de Transporte/genética , Embrião de Mamíferos/química , Proteínas de Membrana/análise , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Zigoto/química
20.
Hum Mol Genet ; 15(15): 2363-75, 2006 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-16801329

RESUMO

Heterozygous mutations in the HNF1beta/vHNF1/TCF2 gene cause maturity-onset diabetes of the young (MODY5), associated with severe renal disease and abnormal genital tract. Here, we characterize two fetuses, a 27-week male and a 31.5-week female, carrying novel mutations in exons 2 and 7 of HNF1beta, respectively. Although these mutations were predicted to have different functional consequences, both fetuses displayed highly similar phenotypes. They presented one of the most severe phenotypes described in HNF1beta carriers: bilateral enlarged polycystic kidneys, severe pancreas hypoplasia and abnormal genital tract. Consistent with this, we detected high levels of HNF1beta transcripts in 8-week human embryos in the mesonephros and metanephric kidney and in the epithelium of pancreas. Renal histology and immunohistochemistry analyses of mutant fetuses revealed cysts derived from all nephron segments with multilayered epithelia and dysplastic regions, accompanied by a marked increase in the expression of beta-catenin and E-cadherin. A significant proportion of cysts still expressed the cystic renal disease proteins, polycystin-1, polycystin-2, fibrocystin and uromodulin, implying that cyst formation may result from a deregulation of cell-cell adhesion and/or the Wnt/beta-catenin signaling pathway. Both fetuses exhibited a severe pancreatic hypoplasia with underdeveloped and disorganized acini, together with an absence of ventral pancreatic-derived tissue. beta-catenin and E-cadherin were strongly downregulated in the exocrine and endocrine compartments, and the islets lacked the transporter essential for glucose-sensing GLUT2, indicating a beta-cell maturation defect. This study provides evidence of differential gene-dosage requirements for HNF1beta in normal human kidney and pancreas differentiation and increases our understanding of the etiology of MODY5 disorder.


Assuntos
Doenças Fetais/genética , Mutação da Fase de Leitura , Fator 1-beta Nuclear de Hepatócito/genética , Rim Displásico Multicístico/genética , Pâncreas/anormalidades , Feto Abortado , Adulto , Diabetes Mellitus Tipo 2/embriologia , Diabetes Mellitus Tipo 2/genética , Epitélio/metabolismo , Epitélio/patologia , Feminino , Dosagem de Genes/fisiologia , Fator 1-beta Nuclear de Hepatócito/metabolismo , Humanos , Imuno-Histoquímica , Rim/embriologia , Rim/metabolismo , Rim/patologia , Masculino , Rim Displásico Multicístico/diagnóstico , Pâncreas/embriologia , Pâncreas/ultraestrutura , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...